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Cyclic quadrilaterals, also known as chordal quadrilaterals, are quadrilaterals whose vertices can all be

inscribed on the same circle[4]. This classification is notable because of specific properties these quadrilaterals

possess which non-cyclic ones do not. Most of these properties hold for convex cyclic quadrilaterals only, but

non-convex (i.e. crossed) quadrilaterals do exist. Additionally, certain subsets of the quadrilaterals are cyclic

by construction, such as squares and rectangles. Likewise, other subsets of the quadrilaterals can never be

cyclic, such as any rhombus which is not a square. Euclid himself provided one of the earliest references to

these quadrilaterals in Book 3, Proposition 22 of his Elements1. A number of small theorems concern cyclic

quadrilaterals in particular, such as Ptolemy’s Theorem, the Intersecting Chords Theorem, and the Japanese

Theorem.

As for specific definitions, the following statements are equivalent:

(1) A convex quadrilateral is cyclic.

(2) The opposite angles of a quadrilateral are supplementary[2] (a direct consequence of Prop. 22).

(3) The perpendicular bisectors of the sides of a quadrilateral intersect at exactly one point.

(4) The product of the lengths of the diagonals is equivalent to the sum of the products of the opposite

sides of the quadrilateral[5]. This is also known as Ptolemy’s Theorem.

(5) The tangent of half of any angle of the quadrilateral times the tangent of half of its opposite angle

is equal to one[3].

Ptolemy was not specifically concerned with studying cyclic quadrilaterals. Instead, he developed his theorem

to assist in the creation of his table of chords, a trigonometric table relating to the value of sines. As stated

in definition 4, a quadrilateral is cyclic if and only if the products of its diagonals’ lengths are equivalent

to the sum of the products of the opposite sides of the quadrilateral. Furthermore, the converse is true as

well, so if the equivalence holds for a given quadrilateral, then that quadrilateral can be inscribed in a circle.

1Prop 22: The sum of the opposite angles of quadrilaterals in circles equals two right angles.
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Ptolemy’s Theorem is really an extension of the Pythagorean Theorem: if the quadrilateral inscribed in a

circle is a rectangle, then applying the Pythagorean Theorem is equivalent to applying Ptolemy’s Theorem,

both of which just imply that the diagonals of the quadrilateral intersect at the origin of the circle.

Ptolemy’s Theorem has two basic proofs, one of which relies of the similarity of triangles and one that

relies on trigonometric identities. However, since the measure of certain angles are warped in non-Euclidean

spaces, the angular proof fails and thus Ptolemy’s Theorem does not necessarily hold in neutral geometry.

The proof of Ptolemy’s Theorem by similarity of triangles is as follows:

(1) Let �ABCD be a cyclic quadrilateral. By construction, ∠BAC = ∠BCD and ∠ADB = ∠ACB.

(2) Construct point X on chord AC such that ∠ABX = CBD.

(3) By common angles, 4ABK ∼ 4DBC and 4ABD ∼ 4KBC.

(4) Thus, |AX|/|AB| = |CD|/|BD| and |CX|/|BC| = |DA|/|BD|. Likewise, |AX|/|BD| = |AB|/|CD|

and |CX|/|BD| = |BC|/|DA|.

(5) Adding the two equalities yields |AX| ∗ |BD|+ |CX| ∗ |BD| = |AB| ∗ |CD|+ |BC| ∗ |DA|.

(6) Factorizing, (|AX|+ |CX|) ∗ |BD| = |AB| ∗ |CD|+ |BC| ∗ |DA|.

(7) Since AX + XC = AC, |AC| ∗ |BD| = |AB| ∗ |CD|+ |BC| ∗ |DA|. This proves the theorem.

The Japanese Theorem is perhaps the strangest and most interesting of the listed theorems. It relates the

incircles of four triangles formed by diagonals on the inside of a cyclic quadrilateral. Specifically, it states

that, given any cyclic quadrilateral, the origins of the incircles2 of its inner triangles form the vertices of a

rectangle[1]. Note that the four triangles mentioned are not the ones formed by the diagonals themselves,

but rather the triangles formed by removing a single vertex from the quadrilateral.

The proof is fairly straightforward:

(1) Let �ABCD be a cyclic quadrilateral.

(2) From 4BCD, we have ∠BIBCDC = 90◦ + ∠BDC/2.

(3) Likewise, ∠BIABCC = 90◦ + ∠BAC/2 from 4ABC.

(4) �ABCD is cyclic, so ∠BDC = ∠BAC, and thus ∠BIBCDC = ∠BIABCC.

2The incircle of a triangle is a circle inscribed inside of a triangle such that all three sides of the triangle are tangent to the
circle.
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Figure 0.1. A cyclic quadrilateral demonstrating the Japanese Theorem.

(5) By Ptolemy’s Theorem, BIABCIBCDC is therefore cyclic, so we have ∠BCIBCD +∠BIABCIBCD =

180◦ and ∠BAIABD + ∠BIABCIABD = 180◦.

(6) ∠BIABCIBCD + ∠BIABCIABD = 360◦ − ∠BCD/2− ∠BAD/2 = 270◦.

(7) ∠IABDIABCIBCD = 90◦. Repeating this method for the other three angles shows all four angles are

right, and thus the quadrilateral formed is a rectangle.

Furthermore, this quadrilateral case of the Japanese Theorem may be extended to any cyclic polygon to

show that the sum of the radii of all incircles formed by the subtriangles of the polygon is constant and

independent of the way the triangles are formed. Since a cyclic quadrilateral may only be divided into

triangles one of two ways, the case is fairly trivial, but the radii sum of IBCD + IABD is indeed equivalent

to the radii sum of IABC + IACD.

In neutral geometry, it is much more difficult to determine whether or not a quadrilateral is cyclic. While

cyclic quadrilaterals certainly exist in neutral geometry (by taking a circle and forming quadrilateral from

four points on the circle), not all statements for cyclic quadrilaterals hold as they do in Euclidean geometry.

For instance, if there is a triangle with an angle sum of less than 180◦, then no rectangles exist. The Japanese

Theorem is then moot, the quadrilateral formed by the centers of the incircles cannot possibly be rectangular.

Furthermore, statements 2, 4, and 5 do not hold in such a geometry. If a triangle with angle sum equivalent

to 180◦ exists, then the geometry is semi-Euclidean and all five statements hold. In the case of triangles
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having an angle sum of greater than 180◦, the statements 2, 4, and 5 fail to hold again. The reason for the

fragility of these particular statements is their dependence on angle and length measurements, both of which

are quantities that can become distorted in neutral geometry. Ptolemy’s Theorem is doubly fragile, as both

proofs rely either on triangle congruence axioms or angle measurement axioms, neither of which necessarily

hold in neutral geometry. Incidence axioms still hold, which explains the resilience of statements 1 and 3. It

is always possible to inscribe a quadrilateral inside of a circle regardless of distortion of the geometry, and

even in neutral geometry, perpendicular bisectors will still intersect at exactly one point when the geometry

is consistent.
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