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When measuring distance between two points in Euclidean space, the most common metric used is the

Euclidean metric. In Euclidean n-space, the distance function d(a, b), which computes the distance between

two points a and b, is given by the following formula:

d(a, b) = d(b, a) =
√
(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2 =

√√√√ n∑
i=1

(ai − bi)2

We see this is a valid metric over any Euclidean n-space as d(a, b) = d(b, a), d(a, a) = 0, and d(a, c) ≤

d(a, b) + d(b, c). This function's construction is identical to that of the L2 norm, indeed, it is also known as

the L2 distance. However, applying instead the L1 norm to Euclidean 2-space gives rise to what is known

as the taxicab plane[2].

The taxicab plane is an interesting take on de�ning distance across Euclidean space. Instead of being

able to travel from point to point �as the crow �ies� to measure distance, we must instead measure on a

component-by-component basis. Thus, the distance between two points is the combined distance between

all corresponding coordinates of the points. In Euclidean 2-space, this is simple, as we already have the

coordinate grid de�ned by the Cartesian coordinate system. The metric on the taxicab plane is de�ned as

follows:

dT (a, b) = dT (b, a) = |a1 − b1|+ |a2 − b2|

The metric can also easily be extended to any dimension using the generalized formula
n∑

i=1

|ai − bi|. In

simplest terms, this formula could accurately describe the distance a taxicab would have to travel from a to b

as it zigzags down city blocks. Additionally, all possible paths are of equal length, as long as the taxicab only

makes turns that bring it nearer to its destination, i.e. the di�erence between the coordinates of the taxicab

and the destination must get smaller with every turn the cab makes. Despite the properties of points, lines,
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Figure 0.1. A circle of radius 2 in the taxicab plane.

and angles all not di�ering from Euclidean coordinate geometry, the odd notion of distance in the taxicab

plane creates some interesting geometrical anomalies. For instance, a circle of radius r in the taxicab plane

consists of the set of all points with distance r from the origin point of the circle. However, because our

taxicab can't drive directly to these points but instead must make turns around the grid, the shape made

by this construction ends up being a square, rotated 45◦ in standard Euclidean space[1].

Another notable quirk of the taxicab plane is that certain geometrical conditions of congruence fail us.

In particular, the following are three �tests� for congruent triangles that do not work in taxicab space:

SAS: (Side-Angle-Side) Two triangles are congruent if they both have two pairs of sides that are of

equal length and the angles between those side are of equal measurement.

ASA: (Angle-Side-Angle) Two triangles are congruent if they both have two pairs of angles that are

of equal measurement and the sides between those angles are of equal length.

SSS: (Side-Side-Side) Two triangles are congruent if all three pairs of sides of the triangles are of equal

length.

For each of these tests, we can construct two triangles which satisfy the test's requirements for congruence

without actually being congruent, simply because of how distances are measured in the taxicab plane. In

the SAS test, we can construct 4ABC with A(0, 2), B(0, 0), and C(2, 0). This is a fairly simple isosceles

triangle. We can then construct 4DEF with D(−1, 1), E(0, 0), and F (1, 1). This, too, is a fairly simple

isosceles triangle with a slightly smaller area than 4ABC. However, we can see that AB = DE, BC = EF ,

and both ∠ABC and ∠DEF are right angles. This satis�es the SAS test, as we have two pairs of sides

that are the same length with the angles between them both being right angles. However, these triangles
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are clearly not congruent, as the area of 4ABC is 2, while the area of 4DEF is 1. One triangle is half the

area of the other yet they share two congruent sides and angles!

Reusing4ABC from the previous example, we can de�ne another triangle,4GHI, withG(−2, 2),H(0, 0),

and I(2, 2). Both of these triangles are isosceles, with a single angle being right, and the other two having

measurements of half of a right angle. In addition to these three angles, the triangles share a pair of sides

with equal length: AC = GI. Picking the two angles on both sides of these segments that correspond to

each other, we have the requirements of the test satis�ed. With ∠BAC = ∠HGI, ∠BCA = ∠HIG, and

AC = GI, ASA implies that the two triangles are congruent. However, we once again know this to be false,

as the area of 4GHI is twice that of 4ABC.

Finally, we will construct two more triangles, 4PQR and 4XY Z, to show the unreliability of the SSS

test. If we de�ne P (−2, 1), Q(0, 0), and R(2, 1), we have a 4PQR with area 2. We can also de�ne X(2, 2),

Y (2,−1), and Z(0, 0), to create 4XY Z with area 3, so we know that 4PQR � 4XY Z. However, we have

PQ = XY , QR = Y Z, and PR = XZ. All three pairs of sides have equal lengths, and yet the triangles are

certainly not congruent. Clearly, we cannot rely on normal conventions of Euclidean space in the taxicab

plane to always have the same outcome.

Despite these inconsistencies between standard Euclidean 2-space and the taxicab plane, some axioms are

still satis�ed in both.

C-1: If A and B are distinct points and if A′ is any point, then for each ray r emanating from A′ there

is a unique point B′ on r such that B′ 6= A′ and AB ∼= A′B′.

C-2: If AB ∼= CD and if AB ∼= EF , then CD ∼= EF . Moreoever, every segment is congruent to itself.

C-3: If A ∗B ∗ C, A′ ∗B′ ∗ C ′, AB ∼= A′B′, and BC ∼= B′C ′, then AC ∼= A′C ′.

C-4: Given any ]BAC and given any ray
−−−→
A′B′ emanating from point A′, then there is a unique ray

−−→
A′C ′ on a given side of

←−→
A′B′ such that ]B′A′C ′ ∼= ]BAC.

C-5: If ]A ∼= ]B and ]A ∼= ]C, then ]B ∼= ]C. Moreover, every angle is congruent to itself.

C-6: If two sides and the included angle of one triangle are congruent, respectively, to two sides and

the included angle of another triangle, then the two triangles are congruent.

Since the �rst axiom only relies on the notion of distance for congruence of lines, it holds in the taxicab

plane as well. Even though distance is distorted along diagonals, we can negate the distortion by moving
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point B′ closer to A′. Although the two segments would no longer be congruent in Euclidean 2-space, we

would now have AB ∼= A′B′ in taxicab space, so C-1 holds. Moreover, C-2 holds vacuously, as the taxicab

metric is valid. All segments in the taxicab plane are thus congruent to themselves (re�exive) and the

distance function is symmetric and transitive. We can derive C-3's veracity from C-2. Given A ∗B ∗ C and

A′ ∗B′ ∗C ′, we know AB ∩BC = AC and A′B′ ∩B′C ′ = A′C ′. Replacing the segments in the construction

of AC with their congruent counterparts, we have A′B′ ∩ B′C ′ = AC. Thus, AC ∼= A′C ′. C-4 is another

axiom which holds automatically. As angles are una�ected by the notion of distance in the taxicab plane,

the axiom remains exactly the same and entirely intact. C-5 holds in the same fashion, and states that

measures of angles in the taxicab plane are re�exive, symmetric, and transitive. C-6 is the only axiom that

does not hold, as proven prior. Just as the angle axioms remain una�ected by the taxicab metric, so does

the Angle Addition proposition 3.19.
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